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A completely new phase for one-component hard spheres is reported in an unexpected region of the
phase diagram. The new phase is observed at compressibility factors intermediate between the solid
and the metastable branches. It can be obtained from either Monte Carlo simulations alone or a
combination of Monte Carlo and molecular dynamics calculations. An analysis of the intermediate
scattering function data shows that the new phase is in a stable equilibrium. Radial distribution
function data, configurational snapshots, bond order parameters, and translational order parameters
obtained from molecular simulations indicate that the new phase is significantly different from the
isotropic liquid, metastable, or crystalline phases traditionally observed in hard sphere systems. This
result significantly changes our previous understanding of the behavior of hard spheres. ©2004
American Institute of Physics.@DOI: 10.1063/1.1739212#

I. INTRODUCTION

The simplest and one of the most widely used models in
molecular simulation is that of the hard sphere.1–7 The exis-
tence of a liquid–solid transition is very well documented3–5

but the ability of one-component hard spheres to display a
glass transition is uncertain.7–10 Glasses11–14 are typically
formed by supercooling~quenching! suitable viscous liquids.
The result is a distinctive form of matter that is neither a
liquid nor a conventional solid. This intermediate nature of
glass makes it of considerable scientific interest, particularly
for the development of theories of phase transformations.
Glass formation can be studied via molecular simulation15

techniques such as Monte Carlo simulation or molecular dy-
namics. If a glass transition exists, it is generally expected to
occur along the metastable16,17 extension of the fluid branch
of the hard sphere phase diagram. In this work, we report
molecular simulation data for one-component hard spheres,
which show the formation of a new phase in an unexpected
region of the phase diagram. We demonstrate that this new
phase is stable and that it is different from conventional iso-
tropic liquid, metastable, and crystalline phases.

II. SIMULATION DETAILS

Monte Carlo simulations were performed in the canoni-
cal ensemble. Hard spheres are athermal and as such, their
properties are independent of temperature~T!. This means
the canonical ensemble becomes anNV ensemble in which
the number of particles~N! and volume (V) are the external
control parameters. The system was typically composed of
500 or 1372 identical hard spheres of diameters. However,
we also studied systems as large as 32 000 to check for finite
size effects. The hard sphere intermolecular potential (u(r ))
at different separations~r! has either a value of 0 (r .s) or
` (r<s) depending on whether or not the spheres overlap.

At each specified packing fraction (h5pNs3/6 V), the
compressibility factor (Z5pV/NkT, wherep is the pressure
and k is Boltzmann’s constant! was obtained by using the
formula for hard spheroids18,19 that count particle contacts.
Conventional periodic boundary conditions were used and
the maximum displacement of translation was adjusted to
have a 50% acceptance rate. The simulations were performed
in cycles with each cycle representing 500 or 1372 attempted
displacements. Typically, at least 200 000 cycles were used
for equilibration and, at least, a further 200 000 cycles poste-
quilibration were performed to obtain ensemble averages of
both the compressibility factor and radial distribution func-
tion (g(r * ),r * 5r /s). Therefore, the absolute statistical un-
certainty of data reported here is very low, typically<0.1%.

III. RESULTS AND DISCUSSION

A. Location of the new phase

Figure 1 compares the compressibility factor as a func-
tion of packing fraction obtained from different simulations
~as detailed below!. At low packing fractions (h,0.494),
the system is an isotropic fluid. However, after the freezing
point (h f50.494), three distinct alternative branches start to
emerge depending on the simulation strategy. The isotropic
fluid can be ‘‘supercooled’’ beyond its freezing point to gen-
erate a metastable extension~phenomenon I!, which contin-
ues until a random close packing~rcp! limit 20 is reached
(h rcp50.64). It is along this metastable branch that efforts in
the literature to find a glass transition have beenexclusively
focused. A solid-phase curve appears at moderate values of
packing fraction and compressibility factor, rapidly rising to
higher values until the face centred cubic~fcc! hard sphere
packing fraction limit (h fcc50.7405) is reached~phenom-
enon II!. This is the conventional description of the phase
diagram of a hard sphere system. The fluid–solid transition
is examined in greater detail in the inset diagram of Fig. 1.
By drawing a tie line from the accepted freezing packing
fraction (h f50.494), we obtain the generally accepted value
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of the melting point packing fraction (hm50.558). We em-
phasize that this conventional fluid–solid transition could
only be obtained if the simulations were initiated from a fcc
lattice.

In addition to these well-known possibilities, we have
observed anothernew alternative. After ‘‘supercooling’’ be-
yond the freezing point, instead of obtaining a metastable
extension of the isotropic fluid curve, a transition is observed
resulting in a new phase curve at compressibility factorsbe-
tweenthe solid-phase curve~phenomenon II! and the meta-
stable curve~phenomenon I!.

The nature of the simulation determines whether phe-
nomena I, II, or III is observed. Conventionally, molecular
simulations at different densities are commenced by posi-
tioning particles on a fcc lattice and allowing the lattice to
‘‘melt’’ as a result of particle displacements. If this approach
is used,only phenomenon II is observed. The metastable
extension20 of the isotropic fluid curve associated with phe-
nomenon I is obtained by using the final configuration of the
previous density as the new initial starting point and reequili-
brating the system to eliminate any overlaps caused by the
increase in density. By progressively adopting this proce-
dure, we have been able to trace the metastable curve toh
50.6414. This is consistent with literature estimates16 of the
rcp limit. We found that if the freezing point configuration
was used as the initial configuration and the density incre-
ment for the simulations wasDr<0.0005, the compressibil-
ity factor obtained for the new configuration was in between
that of the solid phase and the metastable curve. Closer ex-
amination~detailed below! indicated the formation of a new

phase~phenomenon III!. By adopting this procedure in the
vicinity of the freezing point, we have identified that the
transition to the new phase occurs athg50.508, which is
between the conventional16 freezing (h f50.494) and melt-
ing points (hm50.558) associated with the solid–fluid tran-
sition of phenomenon II. We have been able to trace the new
phase curve fromhg50.508 to a maximum packing fraction
of h50.686.

The phenomenon III curve was traced from low to high
packing fractions by progressively incrementing the packing
fraction by less than 0.03. The previous configuration was
used as the initial starting configuration for each new value
of packing fraction. The only way to obtain packing fractions
above that of the rcp is to quench the system step by step.
The step size must be sufficiently small to avoid jams and to
allow the easy removal of any overlaps caused by the com-
pression. Before every simulation at a higher packing frac-
tion, it is important that the previous simulation had been
equilibrated long enough to remove any jamming structure
that will result in failure of the simulation at very high pack-
ing fractions. We note that some molecular dynamics
results21 also indicate the existence of a third curve. In con-
trast to our results, this appears to be a deviation from the
metastable branch, which commences at much higher density
(r.1.15) and compressibility factor (Z.40).

The abrupt discontinuity between the isotropic fluid
curve and the new phase~Fig. 1, phenomenon III! strongly
indicates that the changeover between fluid and the new
phase occurs via a phase transition. In contrast, recent22

Monte Carlo simulations for two-dimensional polydisperse
hard disks display a continuous evolution between fluid and
glass structures without a thermodynamic phase transition.

Although most of the simulations reported in this work
are for a relatively small system size of either 500 or 1372
particles, we have also performed Monte Carlo simulations
for systems with particles ranging from 1372 to 32 000 hard
spheres to test whether or not results are system size depen-
dent. Phenomenon III was observed in all cases, irrespective
of the number of hard spheres used.

B. Equilibrium stability of the new phase

To determine whether or not the new phase is in stable
equilibrium we calculated the self intermediate scattering
functionF(q,t) as defined by Hansen and McDonald23 at the
q value at which the dynamic structure factor (S(q)) has its
maximum. The analysis was similar to that performed for
glasses elsewhere.24,25At equilibrium, F(q,t) must approach
zero and it should be a function oft2t8. In Fig. 2,F(q,t) is
shown as a function oft2t8 for three packing fractionsh
50.524, 0.634, and 0.670 along curve III. For each value of
h, the analysis was conducted using ‘‘time’’ intervals of 25,
50, 100, and 200 Monte Carlo cycles. It is apparent that,
irrespective of the step size or packing faction,F(q,t) goes
to zero. This indicates that phenomenon III has reached a
stable equilibrium.

FIG. 1. The compressibility factor as a function of packing fraction obtained
from different Monte Carlo and molecular dynamics simulations. At lowh,
an isotropic fluid is observed. However, above the freezing point (h
.0.494), three alternative phenomena are possible. Phenomenon I~-----!
~Monte Carlo data!, represents a metastable extension of the isotropic fluid
curve, whereas phenomenon II~—! ~Monte Carlo data! represents a solid
phase. In the literature, a glass phase is expected along I. However, we
observe a distinct new phase~phenomenon III! at h>0.508 ~s! ~Monte
Carlo data! at compressibility factors between the metastable fluid phase and
the solid phase. In all three cases the average statistical uncertainty in the
simulation data is<0.1%. The points marked~3! represent molecular dy-
namics data obtained starting from a fcc lattice configuration, whereas~d!
denotes molecular dynamics data obtained using starting configurations on
the metastable curve. The inset shows the transition region in greater detail.
In the inset the horizontal line is a tie line between the coexisting phases.
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C. Structural properties of the new phase

To examine the structural difference among phenomena
I, II, and III, we calculated the radial distribution function at
a value ofh50.524~Fig. 3!. This packing fraction was cho-
sen because it is only slightly beyond the freezing point and
it is common to phenomena I, II, and III. Peaks ing(r * )
indicate the probability of locating a neighboring sphere at a
given separation. The absence of peaks with increasing sepa-
ration is generally characteristic of a fluid structure. The
g(r * ) behavior for the metastable phase largely conforms to
the expected fluid pattern, although there is a small hump in
the second peak indicating more order than a purely isotropic
fluid. In contrast, the highly ordered nature of a solid is evi-
dent by several well-defined peaks at regular intervals. The
profile of the radial distribution function of the new phase is
inbetween these extremes, indicating the onset of consider-
able order. Like the solid phase, the new phase shows the

development of a shoulder peak after the first main peak, and
more clearly defined peaks in the vicinity ofr * 52 and 3.
The height of the first peak in theg(r * ) profile for the meta-
stable curve„g(r * )56.11… is considerably greater than for
either the new phase„g(r * )54.62… or the solid „g(r * )
54.26…. This progressive reduction in the height of the first
peak is also consistent with the phase assigned to the differ-
ent phenomena.

In addition to the quantitative evidence provided by the
radial distribution functions, configurational snapshots pro-
vide strong qualitative evidence of the structural difference
between the phases. In Fig. 4, two-dimensional snapshots in
the x–y plane of the three-dimensional configurations of
these states are illustrated. The hard spheres of the meta-
stable phase@Fig. 4~a!# are largely randomly distributed,
whereas the hard spheres in the solid@Fig. 4~c!# are concen-
trated around fcc lattice sites. In contrast, the hard spheres in
the new phase@Fig. 4~b!# are arranged with much greater
order than in the conventional metastable phase. A distinct
pattern is apparent in the snapshot but the clustering around
fcc lattice sites that is observed in the solid is absent.

Values of the order parameter~S!26 can also be used to a
quantifiable measure of the order of different phases. Isotro-
pic phases have values ofS close to 0 whereas the limiting
value of 1 indicates a fully crystalline phase. The variation of
the order parameter as a function of packing fraction for
phenomena I, II, and III is illustrated in Fig. 5. The values of
S for phenomenon I are low, which is consistent with an
isotropic fluid and its metastable extension beyond the freez-
ing point. The values ofS for phenomenon II are much larger
and approach unity at high packing fractions. This is consis-
tent with the order expected in a crystalline solid. In contrast,
values ofS for phenomenon III are much lower than those
observed for phenomenon II and they are considerably
higher than the case for phenomenon I. The values ofS for
phenomenon III are in good agreement with the range of
values assigned to glasses by Truskettet al.27

To further analyze the structure of the new phase, the
bond-order parameter method28 was used. The bond-order
parameter method involves determining the fraction of par-
ticles with a common number of connections or nearest
neighbors. The method assumes a predetermined lattice
structure. If the simulated configuration is a perfect lattice,
all particles have the same number of nearest neighbors as
determined by the lattice geometry. A deviation from this
reference value is an indication of both the degree of crys-
tallinity and the validity of the chosen lattice structure. We
applied the bond-order method to analyze the new phase for
both body centered cubic~bcc! and fcc lattices. Figures 6~a!
and 6~b! illustrate the fraction of hard spheres as a function
of nearest neighbors for curves I, II, and III. In the limiting
case of a pure bcc or fcc structure, 100% of all hard spheres
should have 8 and 12 nearest neighbors, respectively.

Figures 6~a! and 6~b! clearly illustrate the structural dif-
ference among phenomena I, II, and III. It is apparent from
Fig. 6~b! that none of the phases corresponds to a bcc lattice.
In contrast, Fig. 6~a! clearly shows that the solid phase~phe-
nomenon II!, forms a fcc lattice because all the hard spheres
have 12 nearest neighbors. The analysis also highlights a

FIG. 2. The self intermediate scaterring function for phenomenon III at
different packing fractions and time intervals. For each packing fraction,
data for four different Monte Carlo ‘‘time’’ intervals are illustrated. At each
packing fraction, starting from the outer most curve, results are shown for
intervals of 25, 50, 100, and 200 cycles, respectively.

FIG. 3. Comparison of the radial distribution functions for phenomena
I ~ !, II ~ !, and III ~••••! at a common packing fractionh
50.524. The differentg(r * ) profiles confirm the structure of I is fluid-like,
II is solid-like, and III is different from these conventional phases.
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clear distinction between the isotropic fluid and its meta-
stable extension compared with either phenomena II or III.
Examining Fig. 6~a! indicates that only a tiny fraction of
hard spheres in the isotropic fluid have more than four neigh-

bors, whereas neighbors ranging from 1 to 12 are almost
equally possible for the metastable extension of the isotropic
fluid curve. The isotropic phase bond-order parameter behav-
ior is consistent with that reported for a Lennard-Jones
fluid.28 The considerable degree of order in the structure of
phenomenon III observed in the radial distribution function,
configurational snapshots, and structure factor data is also
evident in Fig. 6~a!. Approximately 60% of hard spheres

FIG. 4. Two-dimensional snapshots in thex–y plane of the three-
dimensional postequilibrium configuration of the:~a! metastable fluid~phe-
nomenon I!, ~b! new phase~phenomenon III!, and~c! solid ~phenomenon II!
at a common packing fraction ofh50.524. The snapshots were obtained by
combing ten different postequilibration configurations separated by 5000
cycles. The different degree of ordering between the phases is clearly ap-
parent with a distinct ordered pattern apparent for phenomenon III.

FIG. 5. Variation of the order parameter as a function of packing fraction for
phenomena for phenomena I, II, and III.

FIG. 6. Distributions of the number of connections per particle for thermally
equilibrated system of 32 000 hard spheres assuming:~a! fcc and ~b! bcc
coordination. Results are given for phenomena I~s! r50.9 ~isotropic!; ~d!
r51.1 ~metastable!, II ~m! r51.22, and III~n! r51.22. The distributions
are the averaged values obtained for 50 configurations. The lines are simply
intended to guide the eye and should not be interpreted that fractional con-
nections are possible.
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have 12 nearest neighbors. Clearly, the structure of phenom-
enon III does not conform to either a metastable phase or a
conventional solid.

The bond-parameter method requires us to assume a pre-
determined crystal geometry. Truskettet al.27 defined a trans-
lational order parameter (T* ) to provide a crystal-
independent measure or order. We used the same procedure
for calculating T* as reported by Truskettet al.,27 which
involves determining the density–density correlations by in-
tegrating over the absolute value of the total correlation func-
tion. We used their procedure to obtain values of the trans-
lational order parameter27 at different densities and post-
equilibrium configurations~Fig. 7!. The values ofT* shown
in Fig. 7 are consistent with the values attributed to glasses
by Truskettet al.27 The analysis is also further evidence that
the phase is in equilibrium. If the phase had not reached
equilibrium and was not homogeneous, we would expectT*
to be sensitive to a number of postequilibrium configura-
tions. Instead, Fig. 7 shows that for a given packing fraction,
T* is remarkably constant even up to 100 million postequi-
librium cycles.

D. Ergodicity

We have performed tests to check that the new phase is
genuine. The process of quenching has been repeated at sev-
eral different starting packing fractions within the isotropic
fluid region using different intervals of packing fraction.
Phenomenon III was reproduced in these different simula-
tions, which indicates that it is not dependent on the initial
configurations. To test that the simulations have been prop-
erly equilibrated, we monitored configurations for millions
of Monte Carlo cycles beyond the equilibration point. Figure
8~a! shows the variation of the compressibility factor for the
new phase ath50.524 for up to 100 million postequilibra-
tion Monte Carlo cycles corresponding to 50 billion Monte
Carlo moves. It is apparent that there is very little variation
about the mean value.

A limitation29 of the conventional Monte Carlo algo-
rithm in the vicinity of a phase transition is that it is noner-

godic, i.e., some regions of phase space become totally inac-
cessible. A consequence of nonergodic behavior for the hard
sphere system is that the isotropic fluid curve has a meta-
stable extension~phenomenon I! at packing fractions above
that of the freezing point. An ‘‘overheated’’ region can also
be expected to extend the solid curve~phenomenon II! to
packing fractions that are less than that of the melting point.
Various cluster22,30 Monte Carlo algorithms have been pro-
posed which overcome this problem. However these algo-
rithms are currently restricted31 to two dimensions and as
such they cannot be used for hard spheres. In contrast,
molecular dynamics is free from this type of nonergodic
problem.

In view of the above considerations, is the new phase
~phenomenon III! simply an artificial consequence of noner-
godic Monte Carlo sampling? To answer this question we
have also performed molecular dynamics32 simulations for
the hard sphere system. If the molecular dynamics simula-
tions are started from a conventional fcc lattice, only the
isotropic and solid regions are observed without metastable
regions. However, if molecular dynamics simulations are
commenced from a Monte Carlo generated configuration on
the metastable curve~phenomenon I!, the new phase~phe-
nomenon III! is observed. Figure 9 shows that applying mo-
lecular dynamics to the metastable configuration results in a
rapid drop in the compressibility factor. The new configura-
tion obtained from molecular dynamics has the same charac-
ter as reported from Monte Carlo calculations alone. The
new values of the compressibility factor are consistent with
the values obtained from Monte Carlo simulations of the new
phase~phenomenon III!. Figure 1 shows that there is reason-
able qualitative agreement between the compressibility fac-

FIG. 7. Translational order parameters as a function of the number of poste-
quilibrium configurations at different packing fractions along the phenom-
enon III curve. Results are shown forh50.524~s!, 0.634~d!, and 0.670
~n!.

FIG. 8. Variation of the compressibility factor of phenomenon III ath
50.524 as a function of:~a! postequilibration Monte Carlo cycles and~b!
postequilibration reduced time (t* 5t(s/Am/kT)) from molecular dynam-
ics.
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tors for the new phase obtained from either Monte Carlo or
molecular dynamics simulation. The data presented in Fig.
8~b! indicate that the new phase obtained from molecular
dynamics is persistent beyond the equilibration period. The
fact that phenomenon III can be obtained from molecular
dynamics as well as Monte Carlo simulations provide strong
evidence that the new phase is real.

IV. CONCLUSIONS

A new phase for hard spheres was observed with a struc-
ture that does not conform to the conventional isotropic fluid,
metastable, or solid phases. The new phase is stable. This
result significantly alters our previous understanding of the
behavior of hard spheres.
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